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Introduction

1 The ambiguity function or surfaces provides the designer of modern radar and sonar

technology a measure of the effectiveness of a given matched-filter signal in determining the

simultaneous evaluation of range and velocity of a moving object to the particular conditions

of target environment. In this work, we will be concerned with efficient computational

methods for evaluating this function by computers.

The ambiguity function is defined, for our purposes, as the absolute value of the function

K-I

G(j, n) - x XkYk+j exp (-2ri-)
Ok-O

where J..K, N are positive integers, 0_k<K, 0:j<J, -N5n<N and Xk. Yk+j are data. We

will denote V-1 by i.

In section 2., we will view the computation of G(j,n) as a filter or convolution

(of xk exp (- 2 viA) by y;), while in section 3., G(j,n) is interpreted as a Fourier transform
K

(of Xk yk+). Several departures, from usual methods, making use of special circumstances,

will be described, significantly increasing the computational efficiency.

In section 3., as well, the technique of passing a long sequence through an F.I.R. filter

with decimation and computing the discrete Fourier transform (D.F.T.) of the shorter decimat-

ed sequence will be applied to the problem. We will follow the approach of [1].

In section 4., a method based on polynomial approximation theory will be introduced and

compared to the decimating filter technique. Indeed, after some initial differences, the final

stages of computing by the approximation technique coincides with those of the decimating

filter method.
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2. Filter Method

Let A(j,n) - I G(j,n) I. The first method for computing Afj,n) is based upon writing

G(j,n) as a filter and applying fast Fourier transform (FFT) techniques to the resulting

computation. Let

zk(n) - Xk exp ( 2vi-).
K

For each n, -N:nSN, we can write

K-1
(2.1) G(j,n) Zk- zk(n) Yk+j O_<j_<J

k-O

4| which expresses G(j,n) as the first J+1 outputs of a K-tap filter. (That is, we view the

sequence Iy } as the data and the sequence {Zk(n)l as the tap values.)

Equivalently, if we set

- / zk(n) , 0<k<K
zk(n) - (padding)

, K:k<K+J

Y "YK+i- ,0<1<K + J (bit-reversal)

then for each n, -N_<n_5N, we can write G(j,n) as the cyclic convolution.

(2.2) G(jn) - (z(n) • Y)K+J-j O<jsJ.

* Computing the cyclic convolution by standard DFT techniques yields Flow chart A for

the computing of G(j,n), 0<jSJ. In general, the DFT of a sequence x will be denoted by

X.

1



*~ --

Flow Chart A
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Denote by FFT(K) the number of complex multiplications used by the FFT methods to

compute the DFT(K). Note y is independent of n and Y need be computed only once in

Flow chart A. It follows that the number of complex multiplications used by Flow chart A to

compute G(j,n), 0_<js<J, -N5n:5N, is given by

(2.3) (2N+ 1)(K + 2FFT(K + J)+(K+J)) + FFT(K+J).

The number given by (2.3) will be denoted by v n -W t(N, K, J). Table I describes the

numerology for three choices of N, K and J. In the examples, we will take

FFT(K) - K log 2 K.

Table I

-"K J N II,

213 213 50 3145 213

214-700 700 50 1623 , 214-70,700 - 1619 * 214

214-70 70 50 1623 - 2n4-7.070 - 1623 - 214

In certain cases, we can improve on the computational efficiency of the previous method.

Suppose, for instance, we have K - J. The computation of Z(n), -N_<n:_N, can be made as

follows.

Pad the sequence x by setting

(Xk ,0.k<K

Xk (0 Ksk<2K
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and denote the DFT(2K) of x by X. Then,
K-1 u+2n

Xu 2 k exp (2 ri -TKk)

K-1I u
- 1 k (n) exp (2ri 2!-

kmO 2K

2K-1 u
- zk(n) exp (-21ri-).
k=O 2K

It follows that

(2.4) (Z(n))u - ,2 O:Su<2K, -N5nSN.

Once X has been computed, without any additional complex multiplications, we can

compute Z(n), -N5n:SN. Specifically, Z(n) is given by cyclically shifted, mod 2K, the

sequence X 2n places.

Flow chart B descibes how the observation applies to the computation of G(j,n). Also,

the number of complex multiplications used on Flow chart B is given by

(2.5) (2N + 1)(2K + FFT(2K)) + 2 FFT(2K).



-6-

Flow Chart B
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13 13Example. For K - J - 2 and N - 50, substituting into (2.5) yields 1644.2 which is a

50% savings as compared to v, as given in Table 1.

Essentially, the same argument holds if J is any integer multiple of K. The case when K

ia a multiple of J will now be considered. Suppose, for instance, K - 2J. Pad x by setting

Ix , 0k<K

Xk " ,Ksk<3K

(o 2

and let X be the DFT(.i K) of x, as above,
2

(2.6) (Z(2n)). Xu+3 ,Osu< 2 K, -N<2n_<N.
2-

it follows that Z(2n) can be found by cyclically shifting, mod (. K), the sequence X 3n
2

places. Analogously, if we set

( = xk exp(-2wi -1) ,0<k<K

Xk(l) 0 K gk<i
*1 0 , K_<k< 2 K

2

then

(2.7) (Z(2n + 1)) u -X(1)u+3n

Thus, the number of complex multiplications used is

(2.8) (2N + I)(FFT(.K) + K)+3FFT(K)+K.
2 2 2

Example 2. Suppose K - 2 , J - 2 and N - 50. Flow chart A uses approximately

122 6000 complex multiplications. By (2.7), since K -2J, we can compute the case in

ar ximately 22. 4650 complex multiplications.
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3. Transform Method

For each j, 0:5j_<J, consider the sequences, defined mod K,

Yk(J ) - Yk+j

Ok<K,

Uk(j)- Xky,(j).

We can write

(3.1) G(j, n) - Un(j) , -N n5N,

where U(j) is the DFT(K) of u(j). Flow chart C outlines the computation of G(j,n) by this

method. The number of complex multiplications used by the method is

(3.2) (1 + 1)(FFT(K) + K).

We will denote the number given by (3.2) by 'r2 = v2 (K, J). Table H reconsiders those

examples of Table I by this new method and compares these values corresponding values Iri

given in Table I.
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Flow Chart C

Itx y

y(j)

u(j)

DFT(K)

U(j)

Table II

K J N Ir2 ,I

213 213 50 212. 15.8193 r2

2 14-700 700 50 < 5586. 214 2 '2
7

214-70 70 50 < 567. 214 ~3 W2

Note that in the last case the transform method is more computationally efficient than the

filter method.

In the most important applications, N<<K and we will assume this in all that follows.

As evidenced by (3.2), the method of Flow chart C does not take into account the relative

size of N as compared to K. Generally speaking, the problem is to compute the DFT(K) of
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the long sequence u(j) for only a small interval of frequencies -N 5n_<N. We will follow the

approach of [1]. As we will see, the long sequence u(j) will be passed into an FIR filter with

decimation and the DFT of the shorter decimated sequence will be computed. The amount of

complex multiplications used will depend upon the number of taps of the filter and the

decimation rate. However, the DFT of the decimated sequence yields only an approximation

to G(j,n), due to aliasing errors.

Consider to begin with, a K-tap filter given by

h - (h(0), h(1)..., h(K-l))

satisfying the following properties

(I) h(k) - h(-k).

(II) h(k) vanishes outside an interval, -M__k_<M, for some integer M.

(III) Let H be the DFT(K) of h. Then H(0) w I and H(n) never vanishes, -NnN.

Passing the sequences u(j) through the filter h we determine the sequence v(j) given by

K-i

v,(j) Ulk(j) h(k) ,0:51<K,

k-O

or equivalently v(j) - u(j)*h. Let U(j), V(j) denote the DFT(K) of u(j), v(j), respectively.

Then,

V(j) - U(j) x H.

Suppose K - R x L, R, L integers and assume N<R. Consider the (L: I) decimation of



v(j) given by

br(j) " VrL(j) Ogr<R

and denote the DFT(R) of b(j) by B(j). A standard computation, see [1], shows that

Br(j) - L-I(Vr(J) + Er(J)) ,0<r<R,

where

L-I
Er(J) - Ur+R0) H(r + #R) ,0_<r<R.

AI

Condition (III) implies we can write

Un(J) - H(n) - I L Bn(j)-H(n) - En(j) , -N n<N.

We plan to approximate G(j,n) - Un(j) by H(n)- L Bn(j). The error
L-I

H(n) En(j) - UR(j) H(n) H(n + 6R)
'- I

is due to the aliasing of Un+6R(j) into the frequencies -N~gn:<N attenuated by the factors

H(n) l H(n + R), -N_<n<N, 0<6<L. An analysis of this aliasing error was carried out in

[1]. For our purposes, it suffices to remark that the filter h should be chosen to minimize

the factors H(n) - I H(n + 6R), for -N_<n5N, 0<6<L, in the sense of the sup norm.

Condition (I) permits the application of the Remez algorithm as contained in [1] to achieve

the minimization of these factors subject to conditions (II) and (i1). At the same time, the

Remez algorithm produces the uniform bound of these factors.

For each M and L, the Remez algorithm determines a filter h satisfying (I), (II) and

(i11) and minimizing the factors H(n)- H(n + 6R) over the aliasing frequencies. For fixed L,

the error term increases as the number of taps, 2M + 1, of h decreases. Also, increasing

the decimation rate L, with fixed M, increases the error term. Thus, M large and L small
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produces small error terms. However, as we will soon see, the computation of H(n)- L Bn(j)

is most computationally efficient when M is small and L is large.

Variations of these ideas are considered in [1] where weighting factors over the decreas-

ing frequencies are introduced into the Remez subroutine as a way of accounting for the a

priori knowledge that certain aliasing frequencies require less attenuation than others.

Flow chart D describes the computation of H(n)- IL Bn(j), in a straightforward manner.

A more computationally efficient method will eventually be given.

"i
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Flow Chart D For 0O<j <J,

uOj)

VOj)

decimate

b(j)

DFT(R)

B30)

14(n)- L Bn(j).

The number of complex multiplications used by Flow chart D to compute

H(n) L B0(j), -N~nSN, O~j:52J is given by

(3.3) Q + 1)(K +2M + 1 + FFT(R) + 2N + 1)
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The major portion of the computation occurs in passing from x and y(j) to B(j). We will

study this process more closely. First, we can write

K-I

br(j) - U UrL.k(j) h(k)
k=O

K-I
- x h(f) yrL..kJi ,, rL-k h rt Y-k(J)

1=0

M
.- 7 XrL-mh(l) YrL-mlJ)

mM-M

Set fmlr) - XrL+Mmh( - M + m), O_m<2M and gm(r) YrL-0M+m' 0_m<2M + J.

Then,

2M
(3.4) br(j) - I f(r) gm+j(r).

mIO

The process described in Flow chart D assumes j, 0<!j gJ is fixed. We will now adopt the

point of view that r, Or<R, is fixed and use (3.4) to compute br( ), the sequence in j,

0 j_<J, corresponding to the fixed r. Thus, (3.4), expresses b,(j) as the first (J+l)-outputs

of a (2M+1)-tap filter and the methods of section 2., especially Flow chart A, can be

employed. We are also assuming M is sufficiently large to make the approach computationally

efficient.

Flow chart E, below, describes how for fixed r, O_<r<R, the method of Flow chart A

proceeds from original data to the sequence br( ). If Flow chart E is carried out for each r,

O_r<R, then the end of Flow chart D can be applied to b(j) to compute H(n)- L Bn(j).
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*" Flow Chart E For Or<R,

f(r) g(r)

f(r) g(r)

DFr(2M+ I J) DFT(2M+ I J)

F(r) G(r)

F(r) x G (r)

DFT- (2M+ 1 )

f(r)*g(r)

br()
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Flow chart E uses

(3.5) R(2M+ 1 +3 FFT(2M+ I +J) + 2M +1+J)

complex multiplications to compute br(j), Oj<J, 0 <r<R, and hence

H(n)- L Bn(J), -NSn_<N, O_jSJ, can be computed by

(3.5) R(2M+ I +3FFT(2M+ I +J) +2M+ I +J)+ (J+ l)(FFT(R)+2N+ 1)

complex multiplications.

In Table III below, we will denote the number given by (3.6) by W3 w3 (N, K, J, M, L).

Table 3 N -50

K J M L 3  2

213 213 29-1 27 > 2 . 508 212 .15 8193

For a more complete analysis of the relationship between given values of K, J, M, L, N

and the corresponding values of 'W3 see Table I, pages 216 of [1].

4. Approximation Theory

In this section, we will obtain a method analogous to that discussed in section 3, by using

ideas from approximation theory. As in section 3, the DFT(R) will be applied to the (L:I)

decimation of a sequence obtained by passing K-point data through a filter. The filter will be

determined by the degree of the approximation taken, in a sense explained below. Once the

computation to be made is written in this form, the methods of section 3 can be employed.

."......... ".-" . ...- ............
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Consider, again, the expression for G(j,n) given by (3.1); namely,

(4.1) G(j,n) - E Uk(j)exp(-2vi--)
k=O K

Suppose we write K - R.L and k - I + rL, Or<R, 0_51<L. Substituting I + rL for k in

(4.1), we get

R-I L-I

(4.2) G(j,n)- exp(-2wi-M) u .+t(J) exp(-2wi-).
r-0 R to K

The plan is to approximate exp(-2ri-L) by an expression which when placed into (4.2)
K

allows us to write the right-hand side of (4.2) as the DFT(K) of some sequence in r, OSr<R.

This DFT(R) will be taken as an approximation to G(j,n).

We will assume throughout that N< <K. Suppose we approximate

exp(-2i-), -N!n<N, O<t<L, by 1. The resulting error is small when N and L are
K

small. Replacing exp(-21ri-) by I in (4.2), yields
K

R-1
(4.3) Cn(j) - c cr(j) exp(-2viiA)

rwO R

where

L-i

(4.4) cr(j) UL+(j).
t-0

It is easy to see that the number of complex multiplications used is

(4.5) (J + l)(K + FFT(R)).

. . . ....
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Clearly, (4.4), expresses cr(j) as the (L: 1) decimation of the filtered sequence

L- I

Wk(j) - Uk(j) ,0_k<K.

t=.0

For n, -N _ n_5 N, consider that part of the unit circle given by

f(t) - exp(-2vil., OtSL. Denote by q,(t) the polynomial of degree one in t uniquely
K

determined by the conditions

q (O) - f(O)

qi(L) - f(L).

Thus, q,(t) is geometrically the line joining the point I to the point exp(-2ri ).We can
R

write

- 2 i--

L L

Choose a real number d,(n) such that

pl(t) - d,(n)q,(t)

is the best-approximation to f(t), in the sup-norm sense, over the interval 0<t<5L, within the

space of all real multiples of gl(t).

Replacing exp(-21i-) by p (1) in (4.2) we obtain
K

(4.6) dI(n) Cn(j)

where

L-I
(4.7) cr(j) , U (UrL+t(j)(1- - ) -'.0 L L



-19-

and C(j) is the DFT(R) of c(j).

To see the analogy of this approach to the method of section 3, we proceed as follows.

Let h(k), O_k<K, be defined by

(.k. O-Sk<L
h(k) L 'k2

L- -k ,Lgk<2L

and zero otherwise. Consider the 2L-tap filter determined by h,

2L- I
(4.8) " wt(j) - 1 h(l) Ut_.L+,(i)

1=0

By (4.7),"we can write c(j) as the (L: 1) decimating filter

(4.9) Cr(j) WrL(J) ,0Sr<R.

Again, we are led to the computing of the DFT(R) of an (L:I) decimating filter. Here, the

filter is determined by the approximation taken. Since the interpolating polynomial has degree

one, we call the method, the first degree approximation method.

The techniques of section 3, can be applied to the-computation of cr(j). Setting

xI(r) -X(r-)L+t

x'(r) - zt(r) h(f)

y'1+t(r) - y;(r) y'1 +j(r),

which for each r, OSr<R, expresses cr( ) as the first (J+1)-outputs of a 2L-tap filter. The

number of complex multiplications used by this method to compute
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d (n) C,(j). -N5n_5N, 0:5j<J, is

(4.11) 2K + R(3FFT(2L + J) + 2L + J) + (J + 1)(FFT(R) + 2N + I).

Choose M>0 and consider that part of the unit circle given by

f(t) - exp(-2ri A 0t), O:5tML. Denote by qM(t) the uniquely determined M-th degree
K

polynomial in t satisfying

qM(t) - f(t) ,t-0, L,..., ML.

Using Lagrange interpolation we can write

M
qM(t) - hm(t) exp(-21ri -)mn)

R

where h0(t),..., hM(t) are polynomials in t. Choose a real number dM(n) such that

pM(t) - dM(n) q,(t)

is the best-approximation to f(t), in the sup-norm sense, over the interv-l 0_.t_<ML, within

the set of real multiples of qM(t). We call pM(t) an M-th degree approximation since the

interpolating polynomial has degree M.

nISubstituting pm~l) for exp(-2ri -), in (4.2), yields

(4.12) dM(n) C,(j)

where

L-I M
(4.13) cr(j) - 7, hm(') U(rtm)L+I(j)

IMO mCO

and C(j) is the DFT(R) of c(j).



-21-

The analogy with section 3 can be seen by defining h(k), Ok<K, by

h(k) - hn_m(t-m L) Lmf<L(m + 1) ,0_ m_5M

and by considering the (M+I) L-tap filter

(M +tI)L- I

W1(j) h(l) Ut+tML(j).
IMO

Then, c(j) is the (L:I) decimation of this filter; namely,

Cr(j) - WrL(j)"

Arguing as in the previous case, we can express the sequence (cr(O)h..., cr(J)) as the first

(J+ 1)-outputs of an (M+ I) * L-tap filter. The number of complex multiplications used to

compute dM(n) Cn(j), -N_<n:N, 05j!J, by this method is

(4.15) (M + )K + R(J + (M + I)L + 3FFT(J + (M + I)L)) + (J + 1)(FFT(R) + 2N + 1).
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